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Fig. 1. Demonstration of our differentiable fluid simulation on flow maps using our adjoint solver: Top: A sequence of 2D fluid shape optimizations
demonstrating smooth morphing between target silhouettes. Middle: 3D fluid control with multiple keyframes to guide a 3D letter morphing from "G" to "R"
to "A" to "P" to "H". Bottom: A vortex dynamics inference task that predicts future flow evolution from a sequence of observed past images.

This paper presents a novel adjoint solver for differentiable fluid simulation
based on bidirectional flow maps. Our key observation is that the forward
fluid solver and its corresponding backward, adjoint solver share the same
flow map as the forward simulation. In the forward pass, this map trans-
ports fluid impulse variables from the initial frame to the current frame to
simulate vortical dynamics. In the backward pass, the same map propagates
adjoint variables from the current frame back to the initial frame to compute
gradients. This shared long-range map allows the accuracy of gradient com-
putation to benefit directly from improvements in flow map construction.
Building on this insight, we introduce a novel adjoint solver that solves
the adjoint equations directly on the flow map, enabling long-range and
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accurate differentiation of incompressible flows without differentiating in-
termediate numerical steps or storing intermediate variables, as required in
conventional adjoint methods. To further improve efficiency, we propose a
long-short time-sparse flow map representation for evolving adjoint vari-
ables. Our approach has low memory usage, requiring only 6.53GB of data at
a resolution of 1923 while preserving high accuracy in tracking vorticity, en-
abling new differentiable simulation tasks that require precise identification,
prediction, and control of vortex dynamics.
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1 Introduction
Accurately differentiating a dynamic fluid system, particularly com-
puting the derivatives of fluid variables over a long time horizon,
remains a fundamental challenge in both computer graphics and
computational physics. The primary difficulty arises from the intrin-
sic flow nature of fluids: unlike solid systems with more constrained
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configurations, fluid systems evolve freely over space and time un-
der physical laws, giving rise to a high-dimensional, continuously
deforming state space that significantly complicates the backward
differentiation process. As the simulation progresses over longer
time periods (either forward or backward), numerical errors accu-
mulate at each timestep, further degrading the accuracy of gradient
computation and making the long-horizon derivative estimation
increasingly unreliable.
Two mainstream approaches have been developed for differen-

tiating fluid systems governed by the Navier–Stokes equations in
both computer graphics and computational physics. One class of
methods directly differentiates the discrete numerical scheme used
in the forward simulation. A representative example is the pioneer-
ing work by McNamara et al. [2004], which employed a classical
advection-projection scheme [Stam 1999] in the forward process and
computes gradients by sequentially differentiating the advection
and projection steps, where an adjoint system is solved to account
for the projection. This method has been highly successful within
the graphics community and has inspired a substantial body of
follow-up work (e.g., see Holl and Thuerey [2024]; Li et al. [2024c];
Takahashi et al. [2021]). Since this approach directly targets the
discrete formulation used in the forward solver, it ensures that the
computed gradients are fully consistent with the actual simulation
steps, which is critical for using gradient information to guide opti-
mization processes (e.g., in control, animation, or design problems).
The other class of methods derives the adjoint system analytically
at the level of the continuous governing equations, followed by dis-
cretization of the resulting adjoint PDEs. Such approaches have been
widely adopted in computational fluid dynamics for solving inverse
problems (e.g., see Gałecki and Szumbarski [2022]; Stück [2012]).
However, to ensure that the discrete adjoint solution accurately
corresponds to the derivative of the discrete forward simulation,
these methods often rely on high-order discretization, particularly
in their advection schemes and spatial operators, which limits their
practicality in visual computing scenarios where computational
efficiency and scalability are critical.

We propose a new adjoint solver that improves both the accuracy
and efficiency of existing methods for differentiable incompress-
ible flow simulation. Our approach is built upon the concept of
long-range bidirectional flow maps, which have recently emerged
as an effective modeling framework for simulating a wide range
of fluid systems and their multiphysics couplings dominated by
vortical dynamics (e.g., see [Chen et al. 2024b; Deng et al. 2023b; Li
et al. 2024b; Zhou et al. 2024] for examples). The core idea of the
flow-map method is to construct a mapping between the initial time
and the current time that accurately transports physical quantities
between corresponding spatial locations. The term "bidirectional"
refers to the capability of transporting quantities both forward and
backward in time, with the forward and backward maps forming a
consistent and temporally symmetric pair. A key observation un-
derlying our work is that this bidirectional flow map, originally
introduced to enhance the accuracy of forward simulation, can
be naturally repurposed to support the backward adjoint process.
Sharing the same flow map across both forward and backward pro-
cesses enables temporally symmetric transport of fluid quantities
and their adjoints over extended time intervals, which is a proven

strength of flow-map-based formulations. Leveraging this accuracy,
our method eliminates the need to differentiate individual numer-
ical steps, thereby avoiding the high memory and computational
overhead associated with discrete differentiation, and instead en-
ables direct solution of the continuous adjoint PDEs with improved
scalability and precision.
Motivated by this idea, we developed a novel adjoint solver

grounded in flowmap theory to enable long-range, accurate differen-
tiation of incompressible flow systems. Our system comprises three
key components: (1) a forward incompressible fluid solver based on
bidirectional flow maps discretized over a sequence of grid-aligned
frames; (2) a backward adjoint solver that solves the adjoint equa-
tions using the same flow maps as in the forward process; and (3) an
acceleration strategy based on a long-short time-sparse flow map
representation to reduce computational cost without sacrificing ac-
curacy. The forward and backward solvers not only share the same
grid-based bidirectional flow maps but also apply the same numeri-
cal scheme to evolve fluid quantities and their adjoints, respectively,
along opposite time directions.

2 Related Work
Differentiable Fluid Simulation. Differentiable fluid simulation

in computer graphics typically computes gradients by differenti-
ating the discretized forward simulation. The pioneering works
by Treuille et al. [2003] and McNamara et al. [2004] differentiates
the discretized advection-projection fluid simulation method [Stam
1999] and has inspired a line of subsequent works [Holl et al. 2020;
Holl and Thuerey 2024; Li et al. 2024c; Pan and Manocha 2017; Taka-
hashi et al. 2021]. Previous works have also studied differentiating
smoothed-particle hydrodynamics (SPH) [Li et al. 2023b], reduced-
mode fluids [Chen et al. 2024a], and the lattice-boltzmann method
(LBM) [Ataei and Salehipour 2024]. These techniques have enabled
progress in fluid control and optimization, but they can suffer from
limited accuracy or high memory cost when applied to long-horizon
simulations. In contrast, our work does not differentiate a discretized
fluid simulator but directly discretize the continuous adjoint PDEs
of the Navier-Stokes equations, enabling more accurate numerical
solutions to the adjoint equations.

Adjoint Methods. The adjoint method is a standard mathemati-
cal tool for computing gradients in PDE-constrained optimization.
Studies in computational fluid dynamics (CFD) typically apply it to
derive the adjoint Navier-Stokes equations [Giles et al. 2003; Giles
and Pierce 2000; Jameson 1988; Stück 2012], enabling sensitivity
analysis through backward-time evolution. Beyond fluids, adjoint
formulations underpin a broad class of differentiable physics frame-
works, where gradients of physical systems are leveraged for inverse
design, control, and optimization. Applications span elastic materi-
als [Du et al. 2021; Geilinger et al. 2020; Hu et al. 2019b; Qiao et al.
2021a], cloth simulation [Li et al. 2022; Qiao et al. 2020], contact
and collision [Huang et al. 2024a,b], magnetic shells [Chen et al.
2022], and topology optimization [Feng et al. 2023; Liu et al. 2018;
Sigmund 2001; Zhu et al. 2017]. These differentiable physics sys-
tems enable diverse applications including robot design [Gjoka et al.
2024; Ma et al. 2021], surface optimization [He et al. 2024; Mehta
et al. 2022; Montes Maestre et al. 2023], parameter identification
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Fig. 2. Vortex dynamics inference from velocity-field videos. Training
on the first 4 seconds infers 8 random vortices, maintaining accuracy over
extended 12-second predictions.

[Hahn et al. 2019; Li et al. 2023a; Ma et al. 2022], microstructure
discovery [Huang et al. 2024a; Sigmund 2001], and policy learning
[Huang et al. 2021; Li et al. 2018; Qiao et al. 2021b; Zhou et al. 2023],
typically using gradient-based optimizers like Adam [Kingma 2014]
or LBFGS [Nocedal and Wright 1999].

Flow Map Methods. Flow map methods trace their origins to the
method of characteristic mapping (MCM) by Wiggert and Wylie
[1976], later developed in computer graphics by Tessendorf and
Pelfrey [2011] and Qu et al. [2019]. Recent progress on representing
a bidirectional map includes neural network-based storage compres-
sion [Deng et al. 2023b], buffer-free Eulerian representations [Li
et al. 2025b], and the particle flow map method [Chen et al. 2025;
Li et al. 2024b, 2025a; Wang et al. 2025; Zhou et al. 2024], which
have further enhanced accuracy. Gauge-based fluid formulations
[Buttke 1992; Cortez 1996] have been explored with various ap-
plications [Feng et al. 2022; Li et al. 2024a; Nabizadeh et al. 2022].
Despite their accuracy advantages, flow map methods suffer from
high computational complexity, with traditional Eulerian flow map
(EFM) method [Deng et al. 2023b] requiring 𝑂 (𝑛2) flow map evolu-
tion costs, recently addressed by time-sparse approaches [Sun et al.
2025].

3 Physical Model

3.1 Differentiable Fluid
Fluid Equations. We focus on the incompressible Navier–Stokes

equations and the advection of a passive field for fluid simulation:(
𝜕

𝜕𝑡
+ (u · ∇)

)
u = − 1

𝜌
∇𝑝 + 𝜈Δu + f,

∇ · u = 0,
(1)

(
𝜕

𝜕𝑡
+ (u · ∇)

)
𝜉 = 0, (2)

where 𝑝 , f , 𝜈 =
𝜇

𝜌
denote the pressure field, external force, and

the kinematic viscosity, respectively. The scalar field 𝜉 represents
a passive quantity field advected by the fluid, such as smoke den-
sity or color. Given the velocity field u𝑠′ and passive field 𝜉𝑠′ at
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Fig. 3. Vortex dynamicswith obstacle interference.Method successfully
infers vortices with vortex-obstacle interactions, enabling accurate long-
term flow prediction around geometric constraints.

arbitrary start time 𝑠′ ≥ 𝑠 , Equation 1 determines their exact evolu-
tion for any 𝑡 ≥ 𝑠′ with well-defined boundary conditions, denoted
as (u𝑡 , 𝜉𝑡 ) = F𝑠′→𝑡 (u𝑠′ , 𝜉𝑠′ ). The fluid simulation method approxi-
mates this process numerically as (û𝑡 , 𝜉𝑡 ) = F̂𝑠′→𝑡 (u𝑠′ , 𝜉𝑠′ ), where ·̂
denotes numerical approximation.

Adjoint Equations. In fluid-related optimization problems, we aim
to minimize an objective functional

𝐿(u, 𝜉) =
∫ 𝑟

𝑠

∫
U𝑡

𝐽 (u, 𝜉, 𝑡)𝑑x𝑑𝑡, (3)

where the objective functional integrand 𝐽 is a time-dependent func-
tional of the velocity field u and the passive scalar 𝜉 , for example, the
terminal velocity loss 𝐽 (u, 𝜉, 𝑡) = 𝛿 (𝑡 −𝑟 )∥u−utarget∥22, where utarget
and 𝛿 denote the target velocity field and the Dirac delta function,
respectively. When applying common optimization methods such
as gradient descent to minimize 𝐿, it is necessary to compute the
gradient information u∗

𝑡 =
𝜕𝐿
𝜕u𝑡

and 𝜉∗𝑡 =
𝜕𝐿
𝜕𝜉𝑡

, which are referred to
as the adjoints of u𝑡 and 𝜉𝑡 , respectively. [Gałecki and Szumbarski
2022; Stück 2012] shows that u∗

𝑡 and 𝜉∗𝑡 follow the equations:(
𝜕

𝜕𝑡
+ (u · ∇)

)
u∗ = ∇u⊤u∗ + 𝜉∗∇𝜉 − 1

𝜌
∇𝑝∗ + 𝜈Δu∗ − 𝜕𝐽

𝜕u
,

∇ · u∗ = 0,(
𝜕

𝜕𝑡
+ (u · ∇)

)
𝜉∗ = − 𝜕𝐽

𝜕𝜉
,

(4)

where 𝑝∗ is the adjoint pressure. Here we assume that the external
force f is independent of u and 𝜉 , and more general cases can be
derived using the adjoint method. Given the adjoint velocity field
u∗
𝑟 ′ and passive field 𝜉∗

𝑟 ′ at time 𝑟 ′ ≤ 𝑟 , Equation 4 determine their
exact solution for any 𝑡 ≤ 𝑟 ′ with boundary conditions, denoted
as (u∗

𝑡 , 𝜉
∗
𝑡 ) = B𝑟 ′→𝑡 (u∗

𝑟 ′ , 𝜉
∗
𝑟 ′ ). Differentiable fluid simulation aims at

approximating this process numerically as (û∗
𝑡 , 𝜉

∗
𝑡 ) = B̂𝑟 ′→𝑡 (u∗

𝑟 ′ , 𝜉
∗
𝑟 ′ ).

3.2 Method Overview
We address fluid-related optimization problems using the flow map
method, aiming to optimize parameters 𝜃 so that the resulting fluid
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(a) (b)

Fig. 4. Method overview. In (a), we illustrate the symmetry between
the forward and backward passes. The forward pass maps u using the
backward flow map Ψ, while the backward pass maps u∗ using the forward
flow map Φ. Both Ψ and Φ are opposite to the flow direction and require
repeated long-range integration for accuracy, leading to the original EFM’s
𝑂 (𝑚2 ) time complexity, where𝑚 is the flow map length. In (b), we compare
our method with other differentiable approaches. Due to lower accuracy,
existing methods indirectly approximate B → B̂ (semi-transparent one-
way arrows) through approximating F → F̂ (dashed one-way arrows) and
directly differentiating F̂ (dashed double arrows). Although B̂ is consistent
with F̂, B → B̂ is inaccurate. In contrast, our method leverages the strict
correspondence between F and B. We only need to construct accurate
approximations F → F̂ and B → B̂ respectively (dashed double arrows), and
the consistency between F̂ and B̂ then naturally follows through transitivity
(semi-transparent dashed double arrows), enabled by the higher accuracy
of flow maps.

states u𝜃𝑡 (x) and 𝜉𝜃 (·) minimize the objective functional 𝐿(u𝜃 , 𝜉𝜃 )
under specific control scenarios and subject to constraints of fluid
dynamics (Equation 1). The process iteratively performs forward
simulation F̂𝑠→𝑟 , evaluates the functional 𝐿(u𝜃 , 𝜉𝜃 ), computes the
backward adjoint process B̂𝑟→𝑠 to obtain adjoints u∗𝜃

𝑡 and 𝜉∗𝜃𝑡 , and
updates the control parameters 𝜃 using these adjoints.

To obtain the scheme for B̂𝑟→𝑠 , unlike previous differentiable fluid
solvers that differentiate the discretized forward process F̂𝑠→𝑡 , our
approach directly computes the continuous backward process B𝑟→𝑡

via flow maps, yielding a principled adjoint formulation and estab-
lishing a symmetric forward–backward framework that uses flow
maps for the consistent evolution of states and adjoints. A high-level
comparison and overview of this computation are shown in Fig. 4.
We then introduce the flow map method (subsection 3.3), describe
its use for forward (subsection 4.1) and adjoint computation (sub-
section 4.2), present a novel acceleration strategy (subsection 4.3),
and finally assemble the complete numerical scheme (section 5),
which we subsequently employ to solve fluid optimization problems
(section 6).

3.3 Flow Map
In fluid simulation, the flow map method [Deng et al. 2023b; Zhou
et al. 2024] enables accurate advection of physics quantities by
constructing a mapping between the initial domain U𝑠 and the
current domain U𝑡 , 𝑟 > 𝑡 > 𝑠 where 𝑠 and 𝑟 are the initial time
and the final time respectively. Consider a fluid moving with a
velocity field u(x, 𝑡), x ∈ U𝑡 . For any time 𝑡1 < 𝑡2, the forward flow
map Φ𝑡1→𝑡2 : U𝑡1 → U𝑡2 and backward flow map Ψ𝑡2→𝑡1 : U𝑡2 →
U𝑡1 are defined as functions satisfying Φ𝑡1→𝑡2 (x𝑞 (𝑡1)) = x𝑞 (𝑡2)
and Ψ𝑡2→𝑡1 (x𝑞 (𝑡2)) = x𝑞 (𝑡1) for any fluid particle 𝑞 moving with
𝑑x𝑞 (𝑡 )
𝑑𝑡

= u(x𝑞 (𝑡), 𝑡), where x𝑞 (𝑡) denotes position of particle 𝑞

670 33

100

200

300

400

133 167

267

367

467

233

333

433

(a) Letter Morphing (b) Life-Form Evolution

Fig. 5. 2D sequential optimizations. A sequence of 2D morphing tasks,
including letter morphing (’G’→’R’→’A’→’P’→’H’) and life-form evolu-
tion, demonstrating smooth transitions between target silhouettes. Each
row illustrates the progressive transformation between two consecutive
keyframes, with target shapes shown on the left.

at time 𝑡 . The Jacobian matrices of the flow maps are denoted as
F𝑡1→𝑡2 (x) =

𝜕Φ𝑡1→𝑡2 (x)
𝜕x , x ∈ U𝑡1 and T𝑡2→𝑡1 (x) =

𝜕Ψ𝑡2→𝑡1 (x)
𝜕x , x ∈ U𝑡2 ,

respectively. From start time 𝑠′ ≥ 𝑠 selected arbitrarily, flow maps
and their Jacobians follow evolution equations:{

𝜕Φ𝑠′→𝑡 (x)
𝜕𝑡

= u(Φ𝑠′→𝑡 (x), 𝑡), Φ𝑠′→𝑠′ (x) = x,
𝜕F𝑠′→𝑡 (x)

𝜕𝑡
= ∇u(Φ𝑠′→𝑡 (x), 𝑡)F𝑠′→𝑡 (x), F𝑠′→𝑠′ (x) = I,

(5)

{
𝐷Ψ𝑡→𝑠′ (x)

𝐷𝑡
= 0, Ψ𝑠′→𝑠′ (x) = x,

𝐷T𝑡→𝑠′ (x)
𝐷𝑡

= −T𝑡→𝑠′ (x)∇u(x, 𝑡), T𝑠′→𝑠′ (x) = I.
(6)

In the flow map method, accurate calculation of advection de-
pends on the accuracy of flow maps. While the forward flow map
Φ𝑠′→𝑡 and its Jacobian F𝑠′→𝑡 can be integrated accurately on grids
using high-order schemes, like the Fourth-order Runge-Kuttamethod
(RK4) for computing Equation 5, the semi-Lagrangian treatment of
advection terms 𝐷

𝐷𝑡
in Equation 6 introduces dissipation and accu-

mulates errors, making precise computation of Ψ and T challenging.
To address this issue, [Deng et al. 2023b] observes that at any given
time 𝑟 ′, the backward flow map Ψ𝑟 ′→𝑠′ and its Jacobian T𝑟 ′→𝑠′ can
be interpreted as the result of evolving Ψ𝑟 ′→𝑡 and T𝑟 ′→𝑡 backward
in time from 𝑟 ′ to 𝑠′ with Δ𝑡 < 0, which follows the dynamics of
the reverse-time fluid motion without advection terms with start
time 𝑟 ′ (see Fig. 6 for illustration):

𝜕Ψ𝑟 ′→𝑡 (x)
𝜕𝑡

= u(Ψ𝑟 ′→𝑡 (x), 𝑡), Ψ𝑟 ′→𝑟 ′ (x) = x,
𝜕T𝑟 ′→𝑡 (x)

𝜕𝑡
= ∇u(Ψ𝑟 ′→𝑡 (x), 𝑡) T𝑟 ′→𝑡 (x), T𝑟 ′→𝑟 ′ (x) = I.

(7)

Since Equation 7 excludes advection terms, high-order integration
can accurately compute the backward flow map Ψ and its Jaco-
bian T . This approach is known as the Eulerian Flow Map method
(EFM), and based on the accurately computed flow maps from Equa-
tion 5 and Equation 7, it achieves state-of-the-art performance in
preserving vortex structures.
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Fig. 6. Illustration of long-range flow map evolution in different
methods. Let𝑚 be the reinitialization interval, typically𝑚 = 15 ∼ 60. (a)
EFM computes Ψ𝑡→𝑠′ at every time step by repeatedly evolving back to
the previous reinit time. The number of steps crossed by each curve in the
figure indicates the number of steps required for each flow map evolution,
resulting in a total cost of𝑂 (𝑚2 ) . (b) Time-Sparse EFM computes Ψ𝑡→𝑠′

only at reinit steps, reducing the cost to𝑂 (𝑚) . (c)(d) Our improved Time-
Sparse EFM introduces shorter intermediate flow maps between reinit
steps to improve accuracy at intermediate times, while maintaining the
overall cost at𝑂 (𝑚)—specifically, doubling the number of flow map steps
compared to (b).

4 Differentiable Flow Maps
To implement differentiable flow maps, we compute B̂ by directly
discretizing the backward process B, rather than differentiating F̂
as in previous methods. Using flow maps, we first solve the Navier-
Stokes Equation 1 forward from the start time 𝑠 to the end time 𝑟 ,
then solve the adjoint Navier-Stokes Equation 4 backward from 𝑟 to
𝑠 . These two processes are referred to as the forward and backward
pass, which will be discussed below.

4.1 Forward Pass
By [Li et al. 2024b], Equation 1 can be accurately computed via flow
maps, using the integral form of Equation 1

u(x, 𝑡) = T⊤
𝑡→𝑠 (x)u(Ψ𝑡→𝑠 (x), 𝑠) + T⊤

𝑡→𝑠 (x)Γ𝑠→𝑡 (Ψ𝑡→𝑠 (x)),

Γ𝑠→𝑡 (x) =
∫ 𝑡

𝑠

F ⊤
𝑠→𝜏 (x)

(
− 1
𝜌
∇𝑝 + 1

2
∇∥u∥2 + f

)
(Φ𝑠→𝜏 (x), 𝜏)𝑑𝜏,

𝜉 (x, 𝑡) = 𝜉 (Ψ𝑡→𝑠 (x), 𝑠).
(8)

The detailed procedure is omitted here and provided in Appendix
A of the supplementary material. We follow the same approach to
accurately compute the evolution of the adjoint.

4.2 Backward Pass
Since the adjoint velocity field u∗

𝑡 also satisfies the incompressibility
condition ∇ · u∗

𝑡 = 0, 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 can similarly be solved using
flow maps. Notably, both the forward Equation 1 and the adjoint
Equation 4 are driven by the same velocity field, and the flow of the
backward pass can be viewed as the time reversal of the forward pass.

Fig. 7. 3D sequential optimization. We perform 3D fluid control with
multiple keyframes to guide a 3D shape morphing sequence from "G" to
"R" to "A" to "P" to "H". The red boxes highlight keyframes where the fluid
configuration successfully matches the target shapes.

����

����

Fig. 8. Armadillo shapemorphing at different resolutions.We compare
shape morphing results at two resolutions: 1923 (top) and 1283 (bottom).
The initial sphere is progressively optimized to match the Armadillo shape.
Higher resolution preserves finer geometric details, particularly in regions
highlighted by red boxes.

As a result, the forward flow maps Φ𝑡1→𝑡2 , F𝑡1→𝑡2 and backward
flow maps Ψ𝑡2→𝑡1 , T𝑡2→𝑡1 , 𝑡1 < 𝑡2 used in the forward equations can
serve as the backward and forward flow maps, respectively, in the
backward pass of adjoint equations, allowing adjoint fields u∗

𝑡 and
𝝃 ∗
𝑡 to be expressed as:

u∗ (x, 𝑡) = F ⊤
𝑡→𝑟 (x)u∗ (Φ𝑡→𝑟 (x), 𝑟 ) + F ⊤

𝑡→𝑟 (x)Λ𝑢𝑟→𝑡 (Φ𝑡→𝑟 (x)),

Λ𝑢𝑟→𝑡 (x) =
∫ 𝑡

𝑟

T⊤
𝑟→𝜏 (x)

(
2∇u⊤u∗ + 𝜉∗∇𝜉 − 1

𝜌
∇𝑝 + 𝜈Δu∗

− 𝜕𝐽

𝜕u

)
(Ψ𝑟→𝜏 (x), 𝜏)𝑑𝜏,

𝜉∗ (x, 𝑡) = 𝜉∗ (Φ𝑡→𝑟 (x), 𝑟 ) + Λ𝜉𝑟→𝑡 (Φ𝑡→𝑟 (x)),

Λ𝜉𝑟→𝑡 (x) = −
∫ 𝑡

𝑟

𝜕𝐽

𝜕𝜉
(Ψ𝑟→𝜏 (x), 𝜏)𝑑𝜏 .

(9)

Here, u∗𝑀
𝑟→𝑡 (x) = F ⊤

𝑡→𝑟 (x)u∗ (Φ𝑡→𝑟 (x), 𝑟 ) is referred to as the long-
range mapped adjoint velocity, and Λ𝑢𝑟→𝑡 denotes the path integrator
of the adjoint velocity. The long-range mapping allows u∗ to avoid
the error accumulation caused by advection. For 𝜉∗ (x, 𝑡), 𝜉∗𝑀𝑟→𝑡 (x) =
𝜉∗ (Φ𝑡→𝑟 (x), 𝑟 ) is the long-range mapped adjoint passive field and
Λ𝜉𝑟→𝑡 is its path integrator.

For the adjoint calculation in the backward pass, we leverage the
long-short term mapping conversion strategy introduced in [Chen
et al. 2024b; Li et al. 2024b] to formulate our strategy to calculate
the adjoint integration Equation 9. We discuss the details as follows.

Mapping and Conversion. Wefirst compute the long-rangemapped
adjoint velocity u∗𝑀

𝑟→𝑡 (x) using u∗𝑀
𝑟→𝑡 (x) = F ⊤

𝑡→𝑟 (x) u∗ (Φ𝑡→𝑟 (x), 𝑟 ),
and then convert the long-range mapped adjoint velocity to short-
range advected adjoint velocity u∗𝐴

𝑡 ′→𝑡
(x), where 𝑡 ′ is the last time

step of time 𝑡 (see Supplementary Section B.1 for proof):

u∗𝐴
𝑡 ′→𝑡 (x) = u∗𝑀

𝑟→𝑡 (x) + F ⊤
𝑡→𝑟 (x)Λ𝑢𝑟→𝑡 ′ (Φ𝑡→𝑟 (x)) + 2∇u⊤u∗Δ𝑡,

(10)
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Fig. 9. 3D shape morphing with complex topologies. A sequence of 3D
shape morphing tasks demonstrating smooth transitions between complex
topological structures at frame 0, 50, 100, 150, and 200. Each row illustrates
a progressive transformation from a simple to a highly intricate shape,
with insets showing the corresponding target geometries. The morphing
process preserves topological features while gradually introducing geometric
complexity and fine details.

where the advected adjoint velocity u∗𝐴
𝑡 ′→𝑡

(x) is the velocity ad-
vected directly by the adjoint advection equation

(
𝜕
𝜕𝑡

+ (u · ∇)
)

u∗ =
∇u⊤u∗ from the previous backward timestep 𝑡 ′. After mapped ad-
joint passive field 𝜉∗𝑀𝑟→𝑡 (x) = 𝜉∗ (Φ𝑡→𝑟 (x), 𝑟 ) is calculated, with path
integrator Λ𝜉

𝑟→𝑡 ′ and current source term 𝜕𝐽

𝜕𝜉
, the current adjoint

passive field is updated as:

𝜉∗ (x, 𝑡) = 𝜉∗𝑀𝑟→𝑡 (x) + Λ𝜉
𝑟→𝑡 ′ (Φ𝑡→𝑟 (x)) −

𝜕𝐽

𝜕𝜉
(x)Δ𝑡 . (11)

Accumulated Effect. Then we proceed to compute the accumu-
lated contributions from terms other than the mapping. After the
𝜉∗∇𝜉 is calculated, together with the viscous term 𝜈Δu∗ calculated
from u∗𝐴

𝑡 ′→𝑡
(x) and the source term of the objective functional 𝜕𝐽

𝜕u ,
the unprojected velocity u∗

𝑡
up (x) is calculated as

u∗up
𝑡 (x) = u∗𝐴

𝑡 ′→𝑡 (x) + (𝜉∗∇𝜉 − 1
𝜌
∇𝑝∗ + 𝜈Δu∗ − 𝜕𝐽

𝜕u
)Δ𝑡 . (12)

Projection. To obtain the final adjoint velocity at the current
timestep, an adjoint Poisson equation is solved with the adjoint
non-through boundary condition [Stück 2012]:

Δ𝑡

𝜌
Δ𝑝∗ = ∇ · u∗up

𝑡 ,

u∗
𝑡 · n = 0, x ∈ 𝜕𝑏U𝑡 ,

(13)

where n is the normal vector of the solid boundary, and 𝜕𝑏U𝑡 denotes
the solid boundary of the domain. Then calculate the final adjoint
velocity at current time by projection:

u∗
𝑡 = u∗up

𝑡 − Δ𝑡

𝜌
∇𝑝∗ . (14)

Path Integrator Update. Subsequently, it is necessary to accumu-
late the adjoint source term, adjoint viscous term and adjoint pres-
sure gradient −∇𝑝∗ into the path integrator Λ𝑢𝑟→𝑡 for long-short
term mapping conversion next step and accumulate 𝜕𝐽

𝜕𝜉
into Λ𝜉𝑟→𝑡 .

Λ𝑢𝑟→𝑡 and Λ𝜉𝑟→𝑡 are updated by their definition in Equation 9 with

Fig. 10. Fluid shape morphing with obstacle constraints.We demon-
strate a challenging smoke control task involving obstacle-aware shape
matching. By optimizing the control forces, the bat-shaped fluid navigates
through the gap and transforms into the target configuration.

Δ𝑡 < 0 respetively as:

Λ𝑢𝑟→𝑡 (x) = Λ𝑢𝑟→𝑡 ′ (x) + Δ𝑡T⊤
𝑟→𝑡 (x)

(
2∇u⊤u∗ + 𝜉∗∇𝜉

− 1
𝜌
∇𝑝 + 𝜈Δu∗ − 𝜕𝐽

𝜕u

)
(Ψ𝑟→𝑡 (x), 𝑡),

Λ𝜉𝑟→𝑡 (x) = Λ𝜉
𝑟→𝑡 ′ (x) − Δ𝑡

𝜕𝐽

𝜕𝜉
(Ψ𝑟→𝑡 (x), 𝑡) .

(15)

4.3 Long-Short Time-Sparse EFM
Directly differentiating the flow map forward process poses several
challenges. The original flow map methods, including the Eulerian
Flow Map (EFM) [Deng et al. 2023b] and Particle Flow Map (PFM)
[Zhou et al. 2024], are intensive in terms of both computational cost
and memory consumption. Differentiating the forward process re-
quires additional storage for intermediate states, and the 3–5 times
backward pass computation further exacerbates the time and mem-
ory overhead. However, differentiable simulation requires repeated
runs during optimization, making time efficiency critical. To avoid
the expensive 𝑂 (𝑚2) flow map evolution in EFM, we adopt time-
sparse EFM [Sun et al. 2025] for both the forward Equation 8 and
backward Equation 9 computations. In this approach, long-range
mapping is applied only at reinit steps, while intermediate steps use
semi-Lagrangian for advection and meanwhile accumulate the path
integral for later use in flow map calculation at reinit steps.

The key idea of time-sparse EFM is to tolerate error accumulation
within each reinit interval due to semi-Lagrangian advection, and
then correct it at reinit steps usingmore accurate long-rangemapped
velocities from the last reinit. As shown in Fig. 15 (right), while time-
sparse EFM preserves vortices over long timescales, its energy curve
shows a sawtooth pattern with clear decay between reinit steps.
This is acceptable in the visual effects of computer graphics, where
only selected frames are rendered. By aligning the reinit interval
with the frame output interval, the visual result remains unaffected.
However, in adjoint calculation in backward pass, this poses a major
problem. Unlike visual effects, velocity u at every step contributes
explicitly to the adjoint u∗ through the ∇u⊤u∗ term in Equation 4.
Errors from intermediate steps accumulate via the path integral
Λ𝑟→𝑡 , significantly degrading the accuracy of u∗—as evidenced by
the noticeable artifacts in the adjoint fields of the leapfrogging
example shown in Fig. 15.
To address this issue, we propose Long-Short Time-Sparse

EFM, an improved version of the original Time-Sparse EFM. We
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Algorithm 1 Long-Short Time-Sparse EFM of Backward Pass

Initialize: short-range reinit time 𝑟 ′′ to long-range reinit time 𝑟 ′.
1: for each time step 𝑡𝑐 between 𝑟 ′ and 𝑟 ′ + Δ𝑡𝑙reinit, do
2: March Ψ𝑙

𝑟 ′→𝑡𝑐
,Ψ𝑠
𝑟 ′′→𝑡𝑐

,T 𝑙
𝑟 ′→𝑡𝑐

,T 𝑠
𝑟 ′′→𝑡𝑐

one step; ⊲ eq. 7
3: if ∃𝑚 ∈ Z, st. 𝑡𝑐 = 𝑟 ′ +𝑚Δ𝑡𝑠reinit then
4: Calculate Φ𝑠

𝑡𝑐→𝑟 ′′ and F 𝑠
𝑡𝑐→𝑟 ′′ by integrating Φ𝑠𝑡𝑐→𝑡 and

5: F 𝑠
𝑡𝑐→𝑡 from 𝑡𝑐 to 𝑟 ′′; ⊲ eq. 5

6: Do mapping and conversion with Φ𝑠
𝑡𝑐→𝑟 ′′ and

7: F 𝑠
𝑡𝑐→𝑟 ′′ ; ⊲ eq. 10

8: Reset Ψ𝑠
𝑟 ′′→𝑡𝑐

and T 𝑠
𝑟 ′′→𝑡𝑐

and set 𝑟 ′′ = 𝑡𝑐 ;
9: else
10: Calculate advection with semi-Lagrangian method;
11: Calculate source term and projection;
12: Update Λ𝑢,𝑙

𝑟 ′→𝑡𝑐
, Λ𝜉,𝑙

𝑟 ′→𝑡𝑐
and Λ𝑢,𝑠

𝑟 ′′→𝑡𝑐
, Λ𝜉,𝑠

𝑟 ′′→𝑡𝑐
; ⊲ eq. 15

13: if 𝑡𝑐 = 𝑟 ′ + Δ𝑡𝑙reinit then
14: Calculate Φ𝑙

𝑡𝑐→𝑟 ′ and F 𝑙
𝑡𝑐→𝑟 ′ by integrating Φ𝑙𝑡𝑐→𝑡 and

15: F 𝑙
𝑡𝑐→𝑡 from 𝑡𝑐 to 𝑟 ′; ⊲ eq. 5

16: Correct results by adding long-range mapping with
17: Φ𝑙

𝑡𝑐→𝑟 ′ , F
𝑙
𝑡𝑐→𝑟 ′ and path integrators. ⊲ eq. 9

observe that while Time-Sparse EFM maintains accuracy over long
temporal distances using long-range flow maps, it suffers from
significant errors over short distances. To remedy this, we introduce
sparse, short-range flow maps between reinit steps to improve local
accuracy. We call this scheme Long-Short Time-Sparse EFM. This
scheme is used in both forward simulation and backward adjoint
calculation. Here, we take the backward pass as an example. The
method for the forward pass is similar and presented in Algorithm
3 of Supplementary Section A.
We reinitialize the long-range flow map every Δ𝑡𝑙reinit = 𝑛𝑙Δ𝑡

and the short-range flow map every Δ𝑡𝑠reinit = 𝑛𝑠Δ𝑡 , typically with
𝑛𝑙 = 15 ∼ 60 and 𝑛𝑠 = 1 ∼ 3. In Algorithm 1, we illustrate one long-
range reinit cycle starting from the previous long-range reinit time
𝑟 ′. Let 𝑟 ′′ denote the most recent short-range reinit time, initialized
as 𝑟 ′′ = 𝑟 ′. We maintain two sets of flow maps, Ψ𝑙

𝑟 ′→𝑡
, T 𝑙
𝑟 ′→𝑡

, Φ𝑙𝑡𝑐→𝑡 ,
F 𝑙
𝑡𝑐→𝑡 for long-range, Ψ𝑠

𝑟 ′′→𝑡
, T 𝑠
𝑟 ′′→𝑡

, Φ𝑠
𝑡𝑐→𝑡 , F 𝑠

𝑡𝑐→𝑡 for short-range
and two path integrators Λ𝑢,𝑙

𝑟 ′→𝑡
, Λ𝜉,𝑙

𝑟 ′→𝑡
and Λ𝑢,𝑠

𝑟 ′′→𝑡
, Λ𝜉,𝑠

𝑟 ′′→𝑡
for long-

range and short-range respectively, where 𝑡𝑐 < 𝑟 ′ is the current
time and 𝑡 serves as the evolving time variable during integration.
In Algorithm 1, the blue-highlighted parts indicate the compo-

nents added by Long-Short Time-Sparse EFM compared to Time-
Sparse EFM, corresponding to the blue lines in Fig. 6 (c)(d). Our
method retains the 𝑂 (𝑚) time complexity of flow map evolution,
with a one-time overhead in the number of evolution steps. As in the
original Time-Sparse EFM, we use long-range flowmaps to maintain
accuracy over large time intervals, while short-range flow maps en-
sure accuracy between sparse long-range updates, preventing error
accumulation of u∗ caused by inaccurate intermediate velocities.

5 Numerical Algorithm
We use a grid G with spacing Δ𝑥 , where x𝑔 denotes the position
of grid point 𝑔 ∈ G. We denote the field value at grid point 𝑔 by

Algorithm 2 Long-Short Time-Sparse EFM for Adjoint Field

Initialize: u∗
𝑟 ′′,𝑔 , u∗

𝑟 ′,𝑔 to initial adjoint velocity; T 𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

, F 𝑠
𝑡𝑐→𝑟 ′′,𝑔 ,

T 𝑙
𝑟 ′→𝑡𝑐 ,𝑔

, F 𝑙
𝑡𝑐→𝑟 ′,𝑔 to I; Ψ𝑠

𝑟 ′′→𝑡𝑐 ,𝑔
, Φ𝑠

𝑡𝑐→𝑟 ′′,𝑔 , Ψ𝑙
𝑟 ′→𝑡𝑐 ,𝑔

, Φ𝑙
𝑡𝑐→𝑟 ′,𝑔 to x𝑔;

Λ𝑢,𝑙
𝑟 ′→𝑡𝑐 ,𝑔

, Λ𝜉,𝑙
𝑟 ′→𝑡𝑐 ,𝑔

and Λ𝑢,𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

, Λ𝜉,𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

to 0; 𝑟 ′, 𝑟 ′′, 𝑡𝑐 to 𝑟 .
1: for each time step 𝑡𝑐 from 𝑡𝑛 to 𝑡0 do
2: Load midpoint velocity umid

𝑔 ;
3: March Ψ𝑙

𝑟 ′→𝑡𝑐 ,𝑔
,Ψ𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

,T 𝑙
𝑟 ′→𝑡𝑐 ,𝑔

,T 𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

one step; ⊲ eq. 7
4: if 𝑐 (mod 𝑛𝑠 ) = 0 then
5: Integrate F 𝑠

𝑡𝑐→𝑟 ′′,𝑔 and Φ𝑠
𝑡𝑐→𝑟 ′′,𝑔 from 𝑡𝑐 to 𝑟 ′′; ⊲ eq. 5

6: Calculate mapped adjoint velocity u∗𝑀
𝑟 ′′→𝑡𝑐 ,𝑔

and convert
to one-step advected adjoint velocity u∗𝐴

𝑡𝑐+1→𝑡𝑐 ,𝑔
; ⊲ eq. 10

7: Set initial time for short mapping 𝑟 ′′ to 𝑡𝑐 ;
8: Reinitialize T 𝑠

𝑟 ′′→𝑡𝑐 ,𝑔
to I, Ψ𝑠

𝑟 ′′→𝑡𝑐 ,𝑔
to x𝑔;

9: Calculate 𝜉∗𝑡𝑐 ,𝑔 by Φ𝑠
𝑡𝑐→𝑟 ′′,𝑔 and Λ𝜉,𝑠

𝑟 ′′→𝑡𝑐+1,𝑔
; ⊲ eq. 11

10: else
11: Calculate u∗𝐴

𝑡𝑐+1→𝑡𝑐 ,𝑔
and 𝜉∗𝐴𝑡𝑐+1→𝑡𝑐 ,𝑔

by semi-Lagrangian;
12: Calculate 𝜉∗𝑡𝑐 ,𝑔 = 𝜉∗𝐴𝑡𝑐+1→𝑡𝑐 ,𝑔

− Δ𝑡 𝜕𝐽
𝜕𝜉
;

13: Calculate adjoint viscous term [𝜈Δu∗]𝑔; ⊲ eq. 18
14: Calculate coupling term [𝜉∗∇𝜉]𝑔 and [∇u⊤u∗]𝑔; ⊲ eq. 19
15: Compute source term from objective functional 𝜕𝐽

𝜕u ;
16: Compute unprojected u∗up

𝑡𝑐 ,𝑔
; ⊲ eq. 12

17: Calculate u∗
𝑡𝑐 ,𝑔

using 𝑝∗ from Possion equation; ⊲ eq. 13,14
18: Update both short and long path integratorΛ𝑢,𝑙

𝑟 ′→𝑡𝑐 ,𝑔
,Λ𝜉,𝑙
𝑟 ′→𝑡𝑐 ,𝑔

and Λ𝑢,𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

, Λ𝜉,𝑠
𝑟 ′′→𝑡𝑐 ,𝑔

; ⊲ eq. 15
19: if 𝑐 (mod 𝑛𝑙 ) = 0 then
20: Integrate F 𝑙

𝑡𝑐→𝑟 ′,𝑔 and Φ𝑙
𝑡𝑐→𝑟 ′,𝑔 from 𝑡𝑐 to 𝑟 ′; ⊲ eq. 5

21: Calculate accurate 𝜉∗𝑡𝑐 ,𝑔 and u∗
𝑡𝑐 ,𝑔

by mapping with
F 𝑙
𝑡𝑐→𝑟 ′,𝑔 , Φ𝑙

𝑡𝑐→𝑟 ′,𝑔 and integrator Λ𝑢,𝑙
𝑟 ′→𝑡𝑐 ,𝑔

, Λ𝜉,𝑙
𝑟 ′→𝑡𝑐 ,𝑔

; ⊲ eq. 9
22: Set initial time for long mapping 𝑟 ′ to 𝑡𝑐 .

the subscript 𝑔 . With a fixed time step Δ𝑡 , we define 𝑡𝑖 = 𝑖Δ𝑡 for
𝑖 = 0, . . . , 𝑛, where 𝑡0 = 𝑠 and 𝑡𝑛 = 𝑟 . Our complete algorithm
consists of a forward pass for computing physical quantities and a
backward pass for computing their adjoints. Algorithm 2 illustrates
the backward pass, while the forward pass is presented in Algorithm
4 of Supplementary Section C, as forward pass calculation is not the
main focus of this paper.

Interpolation. To compute themapping, we interpolate themapped
field using a second-order kernel with a support radius of 1.5Δ𝑥 . For
example, the computation of u∗𝑀

𝑟 ′→𝑡𝑐
(x) = F𝑡𝑐→𝑟 ′ (x)u∗ (Φ𝑡𝑐→𝑟 ′ (x), 𝑟 ′)

is given by:

u∗𝑀
𝑟 ′→𝑡𝑐 ,𝑔

= F𝑡𝑐→𝑟 ′,𝑔

∑︁
𝑔′∈𝑁 (Φ𝑡𝑐→𝑟 ′,𝑔 )

u∗
𝑟 ′,𝑔′𝑤 (x𝑔′ − Φ𝑡𝑐→𝑟 ′,𝑔), (16)

where 𝑁 (Φ𝑡𝑐→𝑟 ′,𝑔) = {𝑔′ | 𝑤 (x𝑔′ − Φ𝑡𝑐→𝑟 ′,𝑔) > 0} denotes the set
of grid points neighboring Φ𝑡𝑐→𝑟 ′,𝑔 .

Midpoint Velocity. Following [Deng et al. 2023b], the flow maps
and their Jacobians, F and T , are advected using the fourth-order
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Fig. 11. Comparison with different differentiable solvers. We compare our method with EigenFluids and semi-Lagrangian (SL) methods on two tasks: 2D
smoke control and vortex inference. Columns 1–3: 2D smoke control tasks (Dragon, Turtle, Snake). SL fails to achieve precise fluid control, while EigenFluids
and SL with optimized control forces (Improved SL) can guide the fluid but suffer from poor advection, leading to unrealistic motion. In contrast, our approach
achieves accurate control while preserving fine details and overall volume, resulting in more realistic fluid behavior. Column 4: Vortex inference task, where
only our method succeeds, highlighting its superior accuracy.

Runge-Kutta method to solve Equation 5 and Equation 7, respec-
tively. The midpoint velocity umid

𝑟 is computed according to Algo-
rithm 2 in [Deng et al. 2023b] by marching the velocity field forward
by half a time step. Since these midpoint velocities are also required
during the backward pass for evolving the flow maps and solving
Equation 9, we store them at each step to avoid redundant com-
putation. Unlike those autodiff methods, which require retaining
all intermediate velocities in the computation graph, our method
allows storing them on disk or in memory without using GPU.

BFECC for Mapping. Since the flow maps we evolve are bidirec-
tional, following [Deng et al. 2023b; Sun et al. 2025], we apply back
and forth error compensation and correction (BFECC) during the
mapping process using the flowmaps. Taking themapping of adjoint
velocity u∗

𝑟 ′→𝑡𝑐
(x) = F𝑡𝑐→𝑟 ′ (x)u∗ (Φ𝑡𝑐→𝑟 ′ (x), 𝑟 ′) as an example, the

BFECC procedure is as follows:

u∗(1)
𝑟 ′→𝑡𝑐

(x) = F𝑡𝑐→𝑟 ′ (x)u∗ (Φ𝑡𝑐→𝑟 ′ (x), 𝑟 ′),

u∗(2)
𝑡𝑐→𝑟 ′ (x) = T𝑟 ′→𝑡𝑐 (x)u

∗(1)
𝑟 ′→𝑡𝑐

(Ψ𝑟 ′→𝑡𝑐 (x)),

u∗
𝑟 ′→𝑡𝑐

(x) = u∗(1)
𝑟 ′→𝑡𝑐

(x) + 1
2
F𝑡𝑐→𝑟 ′ (x) (u∗

𝑟 ′ − u∗(2)
𝑡𝑐→𝑟 ′ ) (Φ𝑡𝑐→𝑟 ′ (x)),

(17)
where the superscripts (1) and (2) denote intermediate steps in the
BFECC process. Other terms, such as F𝑡𝑐→𝑟 ′ (x)Λ𝑢𝑟 ′→𝑡𝑐

(Φ𝑡𝑐→𝑟 ′ (x)),
which rely on flow maps for calculation, are similarly computed
using this strategy.

Pressure Projection. For 2D simulations, we solve the Poisson equa-
tion using amultigrid preconditioned conjugate gradient solver (MG-
PCG) as in [Deng et al. 2023b; Zhou et al. 2024]. For 3D simulations,
to improve computational efficiency, we adopt a fast matrix-free
algebraic multigrid preconditioned conjugate gradient (AMGPCG)
solver as used in [Sun et al. 2025].

Derivatives Calculation. On the grid, we compute the viscous term
using second-order finite difference schemes, as

[𝜈Δu]𝑔 = 𝜈
∑︁
𝑔′∈𝑁𝑔

(u′
g − ug)/(|𝑁𝑔 |Δ𝑥2), (18)

where 𝑁𝑔 represents the adjacent grid points of 𝑔 with |𝑁𝑔 | = 4 for
2D and |𝑁𝑔 | = 6 for 3D. For the coupling terms ∇u⊤u∗ and 𝜉∗∇𝜉 in
Equation 10 and Equation 12, we use the third-order kernel-based

interpolation to calculate as

[∇𝜁 ]𝑔 =
∑︁

𝑔′∈𝑁𝑤3
𝑔

𝜁𝑔∇𝑥𝑔𝑤3 (x𝑔 − x𝑔′ ), (19)

where 𝜁 is a field (either u or 𝜉), and 𝑤3 is a third-order kernel
with compact support of radius 2Δ𝑥 . The neighbor set 𝑁𝑤3

𝑔 = {𝑔′ |
𝑤3 (x𝑔′ − x𝑔) > 0} includes grid points within the kernel support
of 𝑔. When computing ∇u⊤u∗, for consistency with u∗ , u used in
∇u⊤u∗ is calculated backward along with u∗.

6 Results and Discussion
In this section, we first validate the accuracy of our method on spe-
cific flow fields and objective functionals whose adjoint velocities
admit analytical solutions. We then demonstrate our approach on
three representative tasks: vortex dynamics inference from videos,
vortex control, and smoke control. For these tasks, we compare our
method with prior differentiable solvers, highlighting both quanti-
tative and qualitative improvements. For each task, we will present
the objective functional integrand 𝐽 (see Equation 3) along with
experiment-specific optimization parameters.

Validation & Ablation Test. First, we validate on cases with known
adjoints for correctness of adjoint calculation: for incompressible
flow with rigid walls, choosing 𝐽 = 1

2𝛿 (𝑡 − 𝑟 )∥u∥2 forces u∗
𝑡 = u𝑡

(𝑟 ≥ 𝑡 ≥ 𝑠), giving a direct velocity check. For all experiments, we
set the simulation to run for 100-500 steps and performed 200–800
optimization iterations. Fig. 15 confirms the correctness of our re-
sults for single one vortex and leapfrog vortices, and also shows
that using Time-Sparse EFM alone incurs large errors, highlight-
ing the need for our Long-Short Time-Sparse EFM. 3D leapfrog.
Fig. 16 confirms our adjoint computation for 3-D leap-frogging
vortex rings— a case standard autodiff fails. It also shows that the
semi-Lagrangian method for forward or backward pass yields in-
correct results. Next, we verify optimization capability through a
known analytic flow. Viscosity Coefficient Inferring. On the do-
main [0, 2𝜋]2, the Navier–Stokes equations admit the Taylor-Green
vortex u = (cos𝑥 sin𝑦,− sin𝑥 cos𝑦)𝑒−2𝜈𝑡 . Using its analytic ve-
locity at 800Δ𝑡 as the target utarget and treating the viscosity 𝜈 as
the optimization parameter, we infer the viscosity by minimizing
𝐽 = 1

2 𝛿 (𝑡 − 𝑟 )
(
∥utarget∥2 − ∥u∥2

)
as shown in Fig. 14.
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Examples. (1) Vortex Dynamics Inference from Videos. This
task infers an initial velocity field, represented by 16 vortices, from
a single RGB video of fluid motion (synthetic or real) [Deng et al.
2023a]. The optimization variables are (𝑐𝑥,𝑖 , 𝑐𝑦,𝑖 ,𝑤𝑖 , 𝑟𝑖 ), 𝑖 = 1, ..., 16
which denote the position, strength, and radius of each vortex re-
spectively. The objective minimizes the difference between simu-
lated frames 𝜉𝑖 and target video frames 𝜉𝑖,gt: 𝐽 = 1

2
∑
𝑘

∑3
𝑖=1 𝛿 (𝑡 −

𝑡𝑘 ) |𝜉𝑖 (x, 𝑡) − 𝜉𝑖,gt (x, 𝑡) |2, where 𝜉𝑖 , 𝑖 = 1, 2, 3 represents the passive
fields for the R, G, and B channels, and 𝑡𝑘 denotes the time cor-
responding to the 𝑘-th frame. Optimization is initialized with 16
randomly placed vortices, and the RGB video is the only input of
the optimization process. We show some beautiful results of infer-
ing initial vorticity field from warped 2D Logo and 2D Gradient
Background (Fig. 2) examples, andmore complex scenarios with ob-
stacles such as 2D Three Cylinders and 2D Leaf Obstacle (Fig. 3).
All demonstrate the robustness and generality of our method in
complex environments, including multiple obstacles and real en-
vironment. This task requires strong vortex preservation, which
can only be achieved using differentiable flow maps. (2) 2D Vortex
Control. This task optimizes the initial positions cctrl

𝑗,init of 1–2 con-
trolled vortices to guide other vortices with position c𝑖 (𝑡) toward
target locations ctarget

𝑖
via vortex interactions, with the loss defined

as 𝐽 =
∑
𝑖 𝛿 (𝑡 − 𝑟 )∥c𝑖 (𝑡) − ctarget

𝑖
∥22, where c𝑖 denotes the vortex

positions and ctarget
𝑖

the target positions. As c𝑖 is driven by u𝑡 , which
depends on vortex interactions and initial positions, the functional
𝐽 can be viewed as a functional of u𝑡 as in Equation 3 and optimized
over cctrl

𝑗,init. Since controlling vortex relies on preserving vortex struc-
tures, flowmaps are particularly well-suited for this task.We present
the scenarios of Single Vortex case (Fig. 12),Multi-Vortex Single-
Target case and the Multi-Vortex Multi-Target case (Fig. 13).
These examples, with increasing levels of difficulty, demonstrate our
method’s ability to preserve vortex structures and to compute accu-
rate gradients for optimization in complex scenarios. (3) 2D Smoke
Control. This task optimizes a time-varying control force f to in-
fluence the fluid and deform smoke into a target shape [Chen et al.
2024a; Treuille et al. 2003]. The force is modeled using𝑚 (𝑚 ∼ 3000)
Gaussian wind fields f𝑖 = w𝑖𝑒

−𝑎∥x−c𝑖 ∥2 with centers c𝑖 and strength
vector w𝑖 as parameters, 𝑖 = 1, ..,𝑚 [Treuille et al. 2003]. The objec-
tive function integrand is 𝐽 =

∑
𝑘∈𝐾 𝛿 (𝑡 − 𝑡𝑘 ) |𝜉 (x, 𝑡) − 𝜉 target (x, 𝑡) |2,

where 𝑡𝑘 denotes the the time of 𝑘−th key frame. We showcase
continuous keyframe optimization through the 2D GRAPH For-
mation example (Fig. 5a), the 2D Life Evolution example (Fig. 5b),
and the 2D Bat Through Obstacles example (Fig. 10), which in-
volves optimization in the presence of obstacles. Accurate shape
control and fluid realism are enabled by the flow map’s precise
passive field mapping and strong advection preservation. (4) 3D
Smoke Control. We extend the above task to a 3D volume setting.
We showcase the comparison of 3D Sphere to Armadillo (Fig. 8)
across different resolutions, the continuous 3D shape transitions in
3D GRAPH (Fig. 7), and the complex topological changes in 3D
Topological Morphing (Fig. 9). These examples demonstrate that
our method remains accurate in 3D, enabling the preservation of
fine smoke strands and coherent flow structures.

Optimized

Initial

Target on the left Target on the right

Fig. 12. Single vortex control via position and vorticity optimization.
We optimize the position and vorticity of the red vortex to guide the blue
vortex toward the target (indicated by the hollow circle). The top row shows
results without optimization, while the bottom row shows optimized results
that successfully steer the blue vortex to the target at frames 0, 400, and
800, with a checkerboard pattern at frame 800.

Optimized

Initial

Single Target Multiple Targets

Fig. 13. Multiple vortex control.We optimize the positions and vorticities
of the white spheres to accomplish complex control tasks involving single
and multiple targets. Hollow circles denote the target positions. The top row
shows results with randomly initialized white spheres, while the bottom
row displays our optimized outcomes. Snapshots of vorticity and rendered
results are provided at frames 0, 400, and 800, with the checkerboard pattern
shown at frame 800.

Table 1. Task categories and comparison of differentiable methods: differen-
tiable semi-Lagrangian (SL), differentiable Eigenfluids (Eigen), and ours. In
the table, ✓ and × indicate whether a solver can accomplish the task; bold
entries denote the experiments selected for comparison, and underlined
entries mark the best-performing solver for each task.

Task Experiments SL Eigen Ours

Vortex Dynamics Inference Fig. 11 (col. 4), 2, 3 × × ✓

Vortex Control Fig. 12, 13 × × ✓

Smoke Control Fig. 11 (col. 1-3), 10, 5a, 5b, 9, 7, 8 ✓ ✓ ✓

Comparison. We demonstrate the effectiveness of our adjoint
method in four experiments and compare it with baseline methods,
including differentiable semi-Lagrangian method [Li et al. 2024c;
Treuille et al. 2003] and differentiable Eigenfluids [Chen et al. 2024a].
For non-open-source reasons, [Chen et al. 2024a] is reproduced by
adapting the open-source code [Börcsök and Szécsi 2023] imple-
mentated in ΦFlow[Holl and Thuerey 2024]. [Treuille et al. 2003] is
implementation by DiffTaichi [Hu et al. 2019a]. As shown in Fig. 11,
our method demonstrates significantly higher accuracy in both
the Vortex Dynamics Inference from Images and 2D Smoke
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Table 2. Final volume conservation errors (%) for the 2D smoke control tasks
in Fig. 11. Lower is better.

Volume Percentage Ours DiffEigen Improved-SL SL

Dragon 0.0016% 2.89% 6.54% 0.44%
Snake 0.0056% 1.50% 4.91% 3.28%
Turtle 0.0018% 2.84% 3.46% 2.02%

Table 3. Runtime (s) and GPU memory cost (GB) comparison between for-
ward and backward passes for different examples. Here, (F) and (B) indicate
whether the data corresponds to the forward pass or the backward pass,
respectively. The reported times are per step and exclude the computation of
external inputs and outputs, such as control forces. Poisson and Advection
report the average cost of a single step of solving the Poisson equation
and advecting the flow map, respectively. In 2D, we implemented a custom
Poisson solver in Taichi, while in 3D we employed the high-performance
MGPCG Poisson solver from [Sun et al. 2025], which makes the 3D Poisson
solve significantly faster than its 2D counterpart.

Figure Resolution memory (F) memory (F&B) time (F) time (B) Poisson Advection

Fig. 11 (col. 4) 256 × 256 1.6 GB 1.6 GB 0.17 s 0.18 s 0.16 s 0.004 s
Fig. 2 256 × 256 1.7 GB 1.7 GB 0.19 s 0.20 s 0.19 s 0.002 s
Fig. 3 256 × 256 1.7 GB 1.7 GB 0.18 s 0.21 s 0.19 s 0.01 s

Fig. 11 (col. 1-3) 256 × 256 1.6 GB 1.6 GB 0.16 s 0.21 s 0.18 s 0.01 s
Fig. 3 256 × 256 1.6 GB 1.6 GB 0.17 s 0.21 s 0.18 s 0.01 s

Fig. 5a & Fig. 5b 256 × 256 1.6 GB 1.6 GB 0.19 s 0.22 s 0.20 s 0.01 s
Fig. 8 Top 196 × 196 × 196 5.69 GB 6.53 GB 0.24 s 0.28 s 0.03 s 0.26 s

Fig. 8 bottom 128 × 128 × 128 2.10 GB 2.35 GB 0.08 s 0.09 s 0.06 s 0.02 s
Fig. 9 128 × 128 × 128 2.10 GB 2.35 GB 0.08 s 0.08 s 0.06 s 0.02 s
Fig. 7 128 × 128 × 128 2.10 GB 2.35 GB 0.09 s 0.10 s 0.03 s 0.05 s

Control tasks. In the 2D smoke control comparison, we further com-
pare with a state-of-the-art method based on the semi-Lagrangian
scheme with optimized control forces [Tang et al. 2021], and our
approach still achieves superior results. Since neither Eigen Fluid
nor Semi-Lagrangian methods preserve vortices, they are unable to
accomplish the 2D Vortex Control task. Moreover, as shown in
[Chen et al. 2024a], Eigen Fluid also encounters difficulties in the
3D Smoke Control scenario. A full summary of task categories
and solver comparisons is provided in Table 1.

Volume Conservation. Benefiting from the accuracy of the flow
map formulation, our method preserves smoke volume effectively
throughout the control process. As shown in Table 2, our method
achieves fluctuations below 0.006% across all 2D examples in Fig. 11,
whereas competing approaches exhibit deviations ranging from
0.44% to 6.54%. In the 3D case (Fig. 7), our method further achieves
a final-frame fluctuation of only 0.018%.

Time and Memory Cost. We report the runtime and GPU memory
usage of our 3D examples to support our choice of numerically
solving the adjoint Navier-Stokes equation instead of differentiating
the forward process. As shown in Table 3, the backward pass has
similar runtime andmemory cost to the forward pass across different
tasks, avoiding the significant increase in backpropagation that is
often attributed to differentiating complex computation graph.

7 Conclusion and Future Work
This paper presents a differentiable flowmap method to improve the
accuracy and applicability of differentiable fluid simulation. Some
limitations still remain. We focus on control forces and velocity

fields, without tackling shape optimization and solid boundaries.
The differentiation of incompressible flow with a free surface re-
mains to be explored. Future work may also explore shape-based
design tasks (e.g., [Li et al. 2024c]), perform shape optimization with
real smoke images as targets, and experiment with more advanced
optimization algorithms beyond quasi-Newton methods.

Fig. 14. Taylor-Green velocity field viscous inference.We use the an-
alytical solution as the target to test if our method can infer the viscosity
from the velocity field. Results at resolutions 128, 256, and 512 are shown.

Fig. 15. Ablation study. Ablation studies on the leapfrog (left) and single-
vortex (right) tests reveal that the original time-sparse EFM fails to compute
accurate adjoints: the evolution of leapfrog vortices shows significant errors,
while the single-vortex particles exhibit zigzag artifacts in the energy curves,
thereby highlighting the necessity of our long-short time-sparse EFM.

Fig. 16. 3D leapfrog comparison of forward and backward processes
using different methods.We test replacing both the forward and back-
ward computations with semi-Lagrangian methods, and the results confirm
that flow map methods are essential for both directions. This experiment
also demonstrates the accuracy of our method in computing the adjoint.
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